segunda-feira, 9 de agosto de 2010

História da Matemática


O primeiro objeto conhecido que atesta a habilidade de cálculo é o osso de Ishango (uma fíbula de babuíno com riscos que indicam uma contagem), e data de 20.000 anos atrás.[1] O desenvolvimento da matemática permeou as primeiras civilizações, e tornou possível o desenvolvimento de aplicações concretas: o comércio, o manejo de plantações, a medição de terra, a previsão de eventos astronômicos, e por vezes, a realização de rituais religiosos.

O estudo de estruturas matemáticas começa com a aritmética dos números naturais e segue com a extração de raízes quadradas e cúbicas, a resolução de algumas equações polinomiais de grau 2, a trigonometria e o cálculo das frações, entre outros tópicos.

Tais desenvolvimentos são creditados às civilizações acadiana, babilônica, egípcia, chinesa, ou ainda, àquelas do vale dos hindus. Na civilização grega, a matemática, influenciada pelos trabalhos anteriores, e pelas especulações filosóficas, tornou-se mais abstrata. Dois ramos se distinguiram, a aritmética e a geometria. Além disto, formalizou-se as noções de demonstração e a definição axiomática dos objetos de estudo. Os Elementos de Euclides relatam uma parte dos conhecimentos geométricos na Grécia do século III a.d. Ha porque antigamente Pitoca era um nome Hebraico.

A civilização islâmica permitiu que a herança grega fosse conservada, e propiciou seu confronto com as descobertas chinesas e hindus, notadamente na questão da representação numérica [carece de fontes?]. Os trabalhos matemáticos se desenvolveram consideravelmente tanto na trigonometria (introdução das funções trigonométricas), quanto na aritmética. Desenvolveu-se ainda a análise combinatória, a análise numérica e a álgebra de polinômios.

Na época do Renascentismo, uma parte dos textos árabes foram estudados e traduzidos para o latim. A pesquisa matemática, se concentrou então, na Europa. O cálculo algébrico se desenvolveu rapidamente com os trabalhos dos franceses Viète e René Descartes. Em seguida, Newton e Leibniz descobriram a noção de cálculo infinitesimal e introduziram a noção de fluxor (vocábulo abandonado posteriormente). Ao longo dos séculos XVIII e XIX, a matemática se desenvolveu fortemente com a introdução de novas estruturas abstratas, notadamente os grupos (graças aos trabalhos de Évariste Galois) sobre a resolubilidade de equações polinomiais, e os anéis definidos nos trabalhos de Richard Dedekind.
Áreas e metodologia

As regras que governam as operações aritméticas são as da álgebra elementar e as propriedades mais profundas dos números inteiros são estudadas na teoria dos números. A investigação de métodos para resolver equações leva ao campo da álgebra abstrata, que, entre outras coisas, estuda anéis e corpos – estruturas que generalizam as propriedades possuídas pelos números. O conceito de vetor, importante para a física, é generalizado no espaço vetorial e estudado na álgebra linear, pertencendo aos dois ramos da estrutura e do espaço.
O ensino da geometria.

O estudo do espaço se originou com a geometria, primeiro com a geometria euclidiana e a trigonometria; mais tarde foram generalizadas nas geometrias não-euclidianas, as quais cumprem importante papel na formulação da teoria da relatividade. A teoria de Galois permitiu resolverem-se várias questões sobre construções geométricas com régua e compasso. A geometria diferencial e a geometria algébrica generalizam a geometria em diferentes direções: a geometria diferencial enfatiza o conceito de sistemas de coordenadas, equilíbrio e direção, enquanto na geometria algébrica os objetos geométricos são descritos como conjuntos de solução de equações polinomiais. A teoria dos grupos investiga o conceito de simetria de forma abstrata e fornece uma ligação entre os estudos do espaço e da estrutura. A topologia conecta o estudo do espaço e o estudo das transformações, focando-se no conceito de continuidade.

Entender e descrever as alterações em quantidades mensuráveis é o tema comum das ciências naturais e o cálculo foi desenvolvido como a ferramenta mais útil para fazer isto. A descrição da variação de valor de uma grandeza é obtida por meio do conceito de função. O campo das equações diferenciais fornece métodos para resolver problemas que envolvem relações entre uma grandeza e suas variações. Os números reais são usados para representar as quantidades contínuas e o estudo detalhado das suas propriedades e das propriedades de suas funções consiste na análise real, a qual foi generalizada para análise complexa, abrangendo os números complexos. A análise funcional trata de funções definidas em espaços de dimensões tipicamente infinitas, constituindo a base para a formulação da mecânica quântica, entre muitas outras coisas.

Para esclarecer e investigar os fundamentos da matemática, foram desenvolvidos os campos da teoria dos conjuntos, lógica matemática e teoria dos modelos.

Quando os computadores foram concebidos, várias questões teóricas levaram à elaboração das teorias da computabilidade, complexidade computacional, informação e informação algorítmica, as quais são investigadas na ciência da computação

Uma teoria importante desenvolvida pelo ganhador do Prémio Nobel, John Nash, é a teoria dos jogos, que possui atualmente aplicações nos mais diversos campos, como no estudo de disputas comerciais.

Os computadores também contribuíram para o desenvolvimento da teoria do caos, que trata com o fato que muitos sistemas dinâmicos desobedecem a leis dinámias para obedecerem a leis lineares que, na prática, tornam seu comportamento imprevisível. A teoria do caos tem relações estreitas com a geometria dos fractais, como o conjunto de Mandelbrot e de Mary, descoberto por Lorenz, conhecido pelo Lorenz Attractor.

Um importante campo na matemática aplicada é a estatística, que permite a descrição, análise e previsão de fenômenos aleatórios e é usada em todas as ciências. A análise numérica investiga os métodos para resolver numericamente e de forma eficiente vários problemas usando computadores e levando em conta os erros de arredondamento. A matemática discreta é o nome comum para estes campos da matemática úteis na ciência computacional.

A Importância do logaritmos



Quando os logaritmos foram inventados, cerca de 400 anos atrás, pelo escocês Jonh Napier, afirmou-se que eles "dobravam" a vida dos astrônomos. Isso porque, naquela época, os astrônomos estavam entre os cientistas mais influentes, e eram, também, os que realizavam o maior número de cálculos. Usando logaritmos, eles notaram que podiam fazer seus cálculos cerca de duas vezes mais rápido!

Com a invenção dos logaritmos, o matemático e banqueiro John Napier propôs, na verdade, uma nova maneira de contar. Essa nova operação - o logaritmo - imediatamente reduziu complicadas contas, que chegavam a levar anos(!), de astrônomos, como Johannes Kepler, Pierre Simon, o Marquês de Laplace, e Tycho Brahe, que viu nos logaritmos um instrumento de trabalho muito importante, por minimizar o tempo gasto na resolução dos cálculos das órbitas dos planetas.

Além de aplicações em Astronomia, localizando as posições dos planetas, essa operação facilitou enormemente os trabalhos em navegação (orientação no mar), em operações bancárias (como empréstimos), em engenharia (construções) e, também, nas ciências que estavam nascendo.
Mas, o que é um logaritmo? Logaritmo é o expoente de um número (base), que indica a potência a que se deve levá-lo para se obter, como resultado, outro dado número. Napier compreendeu que qualquer número pode ser expresso nesses termos. Por exemplo, 100 é 102 e 23 é 101,36173.

Descobriu, além disso, que o logaritmo de a vezes b é igual ao logaritmo de a mais o logaritmo de b - o que transforma complexos problemas de multiplicação em problemas mais simples, de adição. Alguém que esteja multiplicando dois números grandes precisa, apenas, procurar seus logaritmos numa tabela, somá-los e achar o número que corresponde a essa soma, numa tabela inversa, de antilogaritmos.
A sua obra "Descrição da maravilhosa regra dos logaritmos" causou grande surpresa e entusiasmo, porque se trata de técnicas simplificadoras de resolução de problemas de cálculo numérico, problemas esses relacionados ao desenvolvimento do comércio e do progresso da navegação e astronomia. O sistema logarítmico aplicou-se, inicialmente, à trigonometria, necessária à navegação e às observações astronômicas, mas foi estendido, mais tarde, ao cálculo corrente. A palavra "logaritmo" foi inventada pelo próprio Napier, a partir das palavras gregas "Logos" - razão - e "Aritmos" - número.


A descoberta
A descoberta dos logaritmos aconteceu quando Napier procurava uma relação de correspondência entre as progressões aritméticas e as progressões geométricas, quando teria escrito, em latim, as seguintes correspondências, como mostra o quadro ao lado.
A notação dos logaritmos como a conhecemos hoje é devida ao astrônomo e matemático Kepler que, em suas publicações de 1621, 1622 e 1624, escreveu, respectivamente: Logarithmorum 8 basis 2 aequales 3, Logarithm 8 b2 = 3 e, portanto, Log2 8 = 3.

Ainda usando logaritmos
Hoje temos calculadoras que também nos ajudam a realizar cálculos rapidamente. Mas, elas não resolvem todos os problemas sozinhas: há muitas áreas em que o uso de logaritmos é essencial para resolver problemas matemáticos. Por exemplo, logaritmos são necessários para resolver problemas de potências desconhecidas. E um problema desse tipo não se resolve apenas pressionado botões de sua calculadora.

terça-feira, 3 de agosto de 2010

Média harmonica

A média harmônica está relacionada ao cálculo matemático das situações envolvendo as grandezas inversamente proporcionais. Como exemplo, temos a relação entre velocidade e tempo. Suponha que, em uma determinada viagem, um carro desenvolva duas velocidades distintas, durante a metade do percurso ele manteve a velocidade de 50 km/h e durante a metade restante sua velocidade foi de 60 km/h. Vamos determinar a velocidade média do veículo durante o percurso.

De acordo com a média harmônica temos a seguinte relação:





A velocidade média do veículo durante todo o percurso será de aproximadamente 54 km/h.


Caso calculássemos a velocidade média utilizando a média aritmética chegaríamos ao resultado de 55 km/h. Esse valor demonstra que a velocidade e o tempo de percurso nos dois trechos seriam iguais. Mas precisamos considerar que no primeiro trecho o automóvel levou um tempo maior para o percurso, pois a velocidade era de 50 km/h e no segundo trecho o tempo decorrido foi menor, devido à velocidade de 60 km/h.

Nesse momento, observamos a relação inversa entre velocidade e tempo e, para que não ocorra erro, é aconselhável nessas condições a utilização da média harmônica.

Por Marcos Noé
Graduado em Matemática
Equipe Brasil Escola

segunda-feira, 2 de agosto de 2010

DESCONTOS SIMPLES

Existem dois tipos básicos de descontos simples nas operações financeiras: o desconto comercial e o desconto racional. Considerando-se que no regime de capitalização simples, na prática, usa-se sempre o desconto comercial, este será o tipo de desconto a ser abordado a seguir.

Vamos considerar a seguinte simbologia:
N = valor nominal de um título.
V = valor líquido, após o desconto.
D
c = desconto comercial.
d = taxa de descontos simples.
n = número de períodos.

Teremos:
V = N – Dc

No desconto comercial, a taxa de desconto incide sobre o valor nominal N do título. Logo:
Dc = Ndn
Substituindo, vem:
V = N(1 – dn)

Exemplo: Considere um título cujo valor nominal seja $10.000,00. Calcule o desconto comercial a ser concedido para um resgate do título 3 meses antes da data de vencimento, a uma taxa de desconto de 5% a.m.

Solução:
V = 10000 . (1 – 0,05 . 3) = 8500
Dc = 10000 – 8500 = 1500
Resp: valor descontado = $8.500,00; desconto = $1.500,00

Desconto bancário

Nos bancos, as operações de desconto comercial são realizadas de forma a contemplar as despesas administrativas (um percentual cobrado sobre o valor nominal do título) e o IOF – imposto sobre operações financeiras.

É óbvio que o desconto concedido pelo banco, para o resgate de um título antes do vencimento, através desta técnica, faz com que o valor descontado seja maior, resultando num resgate de menor valor para o proprietário do título.

Exemplo:
Um título de $100.000,00 é descontado em um banco, seis meses antes do vencimento, à taxa de desconto comercial de 5% a.m. O banco cobra uma taxa de 2% sobre o valor nominal do título como despesas administrativas e 1,5% a.a. de IOF. Calcule o valor líquido a ser recebido pelo proprietário do título e a taxa de juros efetiva da operação.

Solução:
Desconto comercial: Dc = 100000 . 0,,05 . 6 = 30000
Despesas administrativas: da = 100000 . 0,02 = 2000
IOF = 100000 . (0,015/360) . 180 = 750
Desconto total = 30000 + 2000 + 750 = 32750
Daí, o valor líquido do título será: 100000 – 32750 = 67250
Logo, V = $67250,00
A taxa efetiva de juros da operação será: i = [(100000/67250) - 1].100 = 8,12% a. m.

Observe que a taxa de juros efetiva da operação, é muito superior à taxa de desconto, o que é amplamente favorável ao banco.

Duplicatas

Recorrendo a um dicionário encontramos a seguinte definição de duplicata:
Título de crédito formal, nominativo, emitido por negociante com a mesma data, valor global e vencimento da fatura, e representativo e comprobatório de crédito preexistente (venda de mercadoria a prazo), destinado a aceite e pagamento por parte do comprador, circulável por meio de endosso, e sujeito à disciplina do direito cambiário.

Obs:
a) A duplicata deve ser emitida em impressos padronizados aprovados por Resolução do Banco Central.
b) Uma só duplicata não pode corresponder a mais de uma fatura.

Considere que uma empresa disponha de faturas a receber e que, para gerar capital de giro, ela dirija-se a um banco para troca-las por dinheiro vivo, antecipando as receitas. Entende-se como duplicatas, essas faturas a receber negociadas a uma determinada taxa de descontos com as instituições bancárias.

Exemplo:
Uma empresa oferece uma duplicata de $50000,00 com vencimento para 90 dias, a um determinado banco. Supondo que a taxa de desconto acertada seja de 4% a. m. e que o banco, além do IOF de 1,5% a.a. , cobra 2% relativo às despesas administrativas, determine o valor líquido a ser resgatado pela empresa e o valor da taxa efetiva da operação.

SOLUÇÃO:
Desconto comercial = Dc = 50000 . 0,04 . 3 = 6000
Despesas administrativas = Da = 0,02 . 50000 = 1000
IOF = 50000(0,015/360).90] = 187,50

Teremos então:
Valor líquido = V = 50000 – (6000 + 1000 + 187,50) = 42812,50
Taxa efetiva de juros = i = [(50000/42812,50) - 1].100 = 16,79 % a.t. = 5,60 % a.m.
Resp: V = $42812,50 e i = 5,60 % a.m.

Exercícios propostos:

1 – Um título de $5000,00 vai ser descontado 60 dias antes do vencimento. Sabendo-se que a taxa de juros é de 3% a.m. , pede-se calcular o desconto comercial e o valor descontado.

Resp: desconto = $300,00 e valor descontado = $4700,00

2 – Um banco realiza operações de desconto de duplicatas a uma taxa de desconto comercial de 12% a . a., mais IOF de 1,5% a . a. e 2% de taxa relativa a despesas administrativas. Além disto, a título de reciprocidade, o banco exige um saldo médio de 10% do valor da operação. Nestas condições, para uma duplicata de valor nominal $50000,00 que vai ser descontada 3 meses antes do vencimento, pede-se calcular a taxa efetiva de juros da operação.

Resp: 6,06% a.m.

http://www.algosobre.com.br/matematica-f…


Teoria dos Conjuntos

A teoria avançada dos conjuntos foi desenvolvida por volta do ano 1872 pelo matemático alemão Georg Cantor (1845 / 1918) e aperfeiçoada no início do século XX por outros matemáticos, entre eles, Ernst Zermelo (alemão - 1871/1956), Adolf Fraenkel (alemão - 1891/ 1965), Kurt Gödel (austríaco - 1906 /1978), Janos von Newman (húngaro - 1903 /1957), entre outros.

O que se estuda deste assunto ao nível do segundo grau e exigido em alguns vestibulares, é tão somente uma introdução elementar à teoria dos conjuntos, base para o desenvolvimento de temas futuros, a exemplo de relações, funções, análise combinatória, probabilidades, etc

2 - Conjunto: conceito primitivo; não necessita, portanto, de definição.

Exemplo: conjunto dos números pares positivos: P = {2,4,6,8,10,12, ... }.

Esta forma de representar um conjunto, pela enumeração dos seus elementos, chama-se forma de listagem. O mesmo conjunto também poderia ser representado por uma propriedade dos seus elementos ou seja, sendo x um elemento qualquer do conjunto P acima, poderíamos escrever:
P = { x | x é par e positivo } = { 2,4,6, ... }.

2.1 - Relação de pertinência:

Sendo x um elemento do conjunto A , escrevemos x Î A,
onde o símbolo Î significa "pertence a".
Sendo y um elemento que não pertence ao conjunto A , indicamos esse fato com a notação
y Ï A.

O conjunto que não possui elementos , é denominado conjunto vazio e representado por f .
Com o mesmo raciocínio, e opostamente ao conjunto vazio, define-se o conjunto ao qual pertencem todos os elementos, denominado conjunto universo, representado pelo símbolo U.
Assim é que, pode-se escrever como exemplos:
Æ = { x; x ¹ x} e U = {x; x = x}.

2.2 - Subconjunto

Se todo elemento de um conjunto A também pertence a um conjunto B, então dizemos que
A é subconjunto de B e indicamos isto por A Ì B.

Notas:
a) todo conjunto é subconjunto de si próprio. ( A Ì A )
b) o conjunto vazio é subconjunto de qualquer conjunto. (Æ Ì A)
c) se um conjunto A possui m elementos então ele possui 2m subconjuntos.
d) o conjunto formado por todos os subconjuntos de um conjunto A é denominado
conjunto das partes de A e é indicado por P(A).
Assim, se A = {c, d} , o conjunto das partes de A é dado por P(A) = {f , {c}, {d}, {c,d}}
e) um subconjunto de A é também denominado parte de A.

3 - Conjuntos numéricos fundamentais

Entendemos por conjunto numérico, qualquer conjunto cujos elementos são números. Existem infinitos conjuntos numéricos, entre os quais, os chamados conjuntos numéricos fundamentais, a saber:

3.1 - Conjunto dos números naturais

N = {0,1,2,3,4,5,6,... }

3.2 - Conjunto dos números inteiros

Z = {..., -4,-3,-2,-1,0,1,2,3,... }
Nota: é evidente que N Ì Z.

3.3 - Conjunto dos números racionais

Q = {x | x = p/q com p Î Z , q Î Z e q ¹ 0 }. (o símbolo | lê-se como "tal que").
Temos então que número racional é aquele que pode ser escrito na forma de uma fração p/q onde p e q são números inteiros, com o denominador diferente de zero.
Lembre-se que não existe divisão por zero!.
São exemplos de números racionais: 2/3, -3/7, 0,001=1/1000, 0,75=3/4, 0,333... = 1/3,
7 = 7/1, etc.

Notas:

a) é evidente que N Ì Z Ì Q.
b) toda dízima periódica é um número racional, pois é sempre possível escrever uma dízima periódica na forma de uma fração.
Exemplo: 0,4444... = 4/9

3.4 - Conjunto dos números irracionais

Q'
= {x | x é uma dízima não periódica}. (o símbolo | lê-se como "tal que").
Exemplos de números irracionais:
p = 3,1415926... (número pi = razão entre o comprimento de qualquer circunferência e o seu diâmetro)
2,01001000100001... (dízima não periódica)
Ö 3 = 1,732050807... (raiz não exata).

3.5 - Conjunto dos números reais

R = { x | x é racional ou x é irracional }.

Notas:
a) é óbvio que N Ì Z Ì Q Ì R
b) Q' Ì R
c) um número real é racional ou irracional; não existe outra hipótese!


5 - Operações com conjuntos

5.1 - União ( È )

Dados os conjuntos A e B , define-se o conjunto união A È B = { x; x Î A ou x Î B}.
Exemplo: {0,1,3} È { 3,4,5 } = { 0,1,3,4,5}. Percebe-se facilmente que o conjunto união contempla todos os elementos do conjunto A ou do conjunto B.

Propriedades imediatas:
a) A È A = A
b) A È f = A
c) A È B = B È A (a união de conjuntos é uma operação comutativa)
d) A È U = U , onde U é o conjunto universo.

5.2 - Interseção ( Ç )

Dados os conjuntos A e B , define-se o conjunto interseção A Ç B = {x; x Î A e x Î B}.
Exemplo: {0,2,4,5} Ç { 4,6,7} = {4}. Percebe-se facilmente que o conjunto interseção contempla os elementos que são comuns aos conjuntos A e B.

Propriedades imediatas:
a) A Ç A = A
b) A Ç Æ = Æ
c) A Ç B = B Ç A ( a interseção é uma operação comutativa)
d) A Ç U = A onde U é o conjunto universo.

São importantes também as seguintes propriedades :
P1. A Ç ( B È C ) = (A Ç B) È ( A Ç C) (propriedade distributiva)
P2. A È ( B Ç C ) = (A È B ) Ç ( A È C) (propriedade distributiva)
P3. A Ç (A È B) = A (lei da absorção)
P4. A È (A Ç B) = A (lei da absorção)
Observação: Se A Ç B = f , então dizemos que os conjuntos A e B são Disjuntos.

5.3 - Diferença: A - B = {x ; x Î A e x Ï B}.
Observe que os elementos da diferença são aqueles que pertencem ao primeiro conjunto, mas não pertencem ao segundo.
Exemplos:
{ 0,5,7} - {0,7,3} = {5}.
{1,2,3,4,5} - {1,2,3} = {4,5}.

Propriedades imediatas:
a) A - f = A
b) f - A = f
c) A - A = Æ
d) A - B ¹ B - A ( a diferença de conjuntos não é uma operação comutativa).

5.3.1 - Complementar de um conjunto
Trata-se de um caso particular da diferença entre dois conjuntos. Assim é , que dados dois conjuntos A e B, com a condição de que B Ì A , a diferença A - B chama-se, neste caso, complementar de B em relação a A .
Simbologia: CAB = A - B.
Caso particular: O complementar de B em relação ao conjunto universo U, ou seja , U - B ,é indicado pelo símbolo B' .Observe que o conjunto B' é formado por todos os elementos que não pertencem ao conjunto B, ou seja:
B' = {x; x Ï B}. É óbvio, então, que:

a) B Ç B' = f
b) B È B' = U
c) f' = U
d) U' = f

6 - Partição de um conjunto
Seja A um conjunto não vazio. Define-se como partição de A, e representa-se por part(A), qualquer subconjunto do conjunto das partes de A (representado simbolicamente por P(A)), que satisfaz simultaneamente, às seguintes condições:
1 - nenhuma dos elementos de part(A) é o conjunto vazio.
2 - a interseção de quaisquer dois elementos de part(A) é o conjunto vazio.
3 - a união de todos os elementos de part(A) é igual ao conjunto A.

Sejam A e B dois conjuntos, tais que o número de elementos de A seja n(A) e o número de elementos de B seja n(B).
Nota: o número de elementos de um conjunto, é também conhecido com cardinal do conjunto.

Representando o número de elementos da interseção A Ç B por n(A Ç B) e o número de elementos da união A È B por n(A È B) , podemos escrever a seguinte fórmula:
n(A È B) = n(A) + n(B) - n(A Ç B)

Fonte de pesquisa:http://www.algosobre.com.br/matematica/conjuntos.html

Artigo de autoria de Paulo Marques math@paulomarques.com.br